医疗机器人技术可以帮助改善和扩大医疗服务的影响力。医疗机器人的一个主要挑战是机器人与患者之间的复杂物理相互作用是必须安全的。这项工作介绍了基于医疗应用中分形阻抗控制(FIC)的最近引入的控制体系结构的初步评估。部署的FIC体系结构在主机和复制机器人之间延迟很强。它可以在接纳和阻抗行为之间在线切换,并且与非结构化环境的互动是强大的。我们的实验分析了三种情况:远程手术,康复和远程超声扫描。实验不需要对机器人调整进行任何调整,这在操作员没有调整控制器所需的工程背景的医疗应用中至关重要。我们的结果表明,可以使用手术刀进行切割机器人,进行超声扫描并进行远程职业治疗。但是,我们的实验还强调了需要更好的机器人实施例,以精确控制3D动态任务中的系统。
translated by 谷歌翻译
需要强大的动态互动才能与人类一起在日常环境中移动机器人。优化和学习方法已用于模仿和再现人类运动。但是,它们通常不健壮,其概括是有限的。这项工作提出了用于机器人操纵器的层次控制体系结构,并提供了在未知相互作用动力学期间重现类似人类运动的功能。我们的结果表明,复制的最终效应轨迹可以保留通过运动捕获系统记录的初始人类运动的主要特征,并且对外部扰动具有鲁棒性。数据表明,由于硬件的物理限制无法达到人类运动中记录的相同速度,因此很难复制一些详细的运动。然而,可以通过使用更好的硬件来解决这些技术问题,我们提出的算法仍然可以应用于模仿动作。
translated by 谷歌翻译
机器人远程操作将使我们能够在危险或偏远的环境中执行复杂的操纵任务,例如行星勘探或核退役所需的。这项工作提出了使用被动分形阻抗控制器(FIC)的新型远程注射架构,该结构并不依赖于主动粘性组件以保证稳定性。与传统的阻抗控制器在理想条件下(无延迟和最大通信带宽)相比,我们提出的方法在交互作用方面产生了更高的透明度,并在我们的远程注射测试方案中证明了卓越的敏捷性和能力。我们还以高达1 s的极端延迟和通信带宽低至10 Hz的极端延迟来验证其性能。所有结果在具有挑战性的条件下使用拟议的控制器时,无论操作员的专业知识如何,所有结果都可以验证一致的稳定性。
translated by 谷歌翻译
Sky-image-based solar forecasting using deep learning has been recognized as a promising approach in reducing the uncertainty in solar power generation. However, one of the biggest challenges is the lack of massive and diversified sky image samples. In this study, we present a comprehensive survey of open-source ground-based sky image datasets for very short-term solar forecasting (i.e., forecasting horizon less than 30 minutes), as well as related research areas which can potentially help improve solar forecasting methods, including cloud segmentation, cloud classification and cloud motion prediction. We first identify 72 open-source sky image datasets that satisfy the needs of machine/deep learning. Then a database of information about various aspects of the identified datasets is constructed. To evaluate each surveyed datasets, we further develop a multi-criteria ranking system based on 8 dimensions of the datasets which could have important impacts on usage of the data. Finally, we provide insights on the usage of these datasets for different applications. We hope this paper can provide an overview for researchers who are looking for datasets for very short-term solar forecasting and related areas.
translated by 谷歌翻译
Neural networks can be trained to solve regression problems by using gradient-based methods to minimize the square loss. However, practitioners often prefer to reformulate regression as a classification problem, observing that training on the cross entropy loss results in better performance. By focusing on two-layer ReLU networks, which can be fully characterized by measures over their feature space, we explore how the implicit bias induced by gradient-based optimization could partly explain the above phenomenon. We provide theoretical evidence that the regression formulation yields a measure whose support can differ greatly from that for classification, in the case of one-dimensional data. Our proposed optimal supports correspond directly to the features learned by the input layer of the network. The different nature of these supports sheds light on possible optimization difficulties the square loss could encounter during training, and we present empirical results illustrating this phenomenon.
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
Solar forecasting from ground-based sky images using deep learning models has shown great promise in reducing the uncertainty in solar power generation. One of the biggest challenges for training deep learning models is the availability of labeled datasets. With more and more sky image datasets open sourced in recent years, the development of accurate and reliable solar forecasting methods has seen a huge growth in potential. In this study, we explore three different training strategies for deep-learning-based solar forecasting models by leveraging three heterogeneous datasets collected around the world with drastically different climate patterns. Specifically, we compare the performance of models trained individually based on local datasets (local models) and models trained jointly based on the fusion of multiple datasets from different locations (global models), and we further examine the knowledge transfer from pre-trained solar forecasting models to a new dataset of interest (transfer learning models). The results suggest that the local models work well when deployed locally, but significant errors are observed for the scale of the prediction when applied offsite. The global model can adapt well to individual locations, while the possible increase in training efforts need to be taken into account. Pre-training models on a large and diversified source dataset and transferring to a local target dataset generally achieves superior performance over the other two training strategies. Transfer learning brings the most benefits when there are limited local data. With 80% less training data, it can achieve 1% improvement over the local baseline model trained using the entire dataset. Therefore, we call on the efforts from the solar forecasting community to contribute to a global dataset containing a massive amount of imagery and displaying diversified samples with a range of sky conditions.
translated by 谷歌翻译
计算优化问题解决方案解决方案的雅各布是机器学习中的一个核心问题,其应用程序在超参数优化,元学习,优化为层和数据集蒸馏中的应用程序,仅举几例。展开的分化是一种流行的启发式方法,它使用迭代求解器近似溶液,并通过计算路径区分它。这项工作提供了对梯度下降和Chebyshev方法的二次目标的这种方法的非反应收敛速率分析。我们表明,为了确保雅各布的融合,我们可以1)选择较大的学习率,导致快速渐近地收敛,但接受该算法可能具有任意长的燃烧阶段或2)选择较小的学习率直接但较慢的收敛性。我们将这种现象称为展开的诅咒。最后,我们讨论了相对于这种方法的开放问题,例如为最佳展开策略得出实用的更新规则,并与Sobolev正交多项式领域建立了新的联系。
translated by 谷歌翻译
在从机器人控制到仿真的各种机器人应用中,碰撞检测似乎是规范操作,包括运动计划和估计。尽管该主题的开创性工作可以追溯到80年代,但直到最近,正确区分碰撞检测的问题才成为一个中心问题,尤其要归功于科学界围绕该主题所做的持续和各种努力物理。然而,到目前为止,很少有人提出过解决方案,并且只有对所涉及形状的性质的强烈假设。在这项工作中,我们引入了一种通用和高效的方法,以计算任何一对凸形的碰撞检测的导数,这是通过尤其利用随机平滑技术而显示的,这些技术特别适合于捕获非平滑问题的衍生物。这种方法是在HPP-FCL和Pinocchio生态系统中实现的,并在机器人文献的经典数据集和问题上进行了评估,显示了很少的微秒时间来计算许多真实的机器人应用程序直接利用的信息衍生物,包括许多真实的机器人应用程序,包括可不同的模拟。
translated by 谷歌翻译
强化学习(RL)和轨迹优化(TO)具有强大的互补优势。一方面,RL方法能够直接从数据中学习全球控制策略,但通常需要大型样本量以正确地收敛于可行的策略。另一方面,对方法能够利用从模拟器提取的基于梯度的信息,以快速收敛到局部最佳控制轨迹,该轨迹仅在解决方案附近有效。在过去的十年中,几种方法旨在充分结合两类方法,以获得两全其美的最佳选择。从这一研究开始,我们提出了这些方法的一些改进,以更快地学习全球控制政策,尤其是通过通过Sobolev学习来利用敏感性信息,并增强了Lagrangian技术来实施与政策学习之间的共识。我们通过与文献中的现有方法进行比较,评估了这些改进对机器人技术各种经典任务的好处。
translated by 谷歌翻译